Journal track accepted papers (Guangzhou)

JT1: On measuring inconsistency in graph databases with regular path constraints
Authors: Francesco Parisi, Francesco Parisi
Location: Guangzhou | Day: August 30th | Time: 09:40 | Session: Constraint Satisfaction and Optimization
Show Abstract
Real-world data are often inconsistent. Although a substantial amount of research has been done on measuring inconsistency, this research concentrated on knowledge bases formalized in propositional logic. Recently, inconsistency measures have been introduced for relational databases. However, nowadays, real-world information is always more frequently represented by graph-based structures which offer a more intuitive conceptualization than relational ones. In this paper, we explore inconsistency measures for graph databases with regular path constraints, a class of integrity constraints based on a well-known navigational language for graph data. In this context, we define several inconsistency measures dealing with specific elements contributing to inconsistency in graph databases. We also define some rationality postulates that are desirable properties for an inconsistency measure for graph databases. We analyze the compliance of each measure with each postulate and find various degrees of satisfaction; in fact, one of the measures satisfies all the postulates. Finally, we investigate the data and combined complexity of the calculation of all the measures as well as the complexity of deciding whether a measure is lower than, equal to, or greater than a given threshold. It turns out that for a majority of the measures these problems are tractable, while for the other different levels of intractability are exhibited.
JT9: CureGraph: Contrastive multi-modal graph representation learning for urban living circle health profiling and prediction
Authors: Jinlin Li, Xiao Zhou
Location: Guangzhou | Day: August 30th | Time: 09:40 | Session: DM: Mining temporal data
Show Abstract
The early detection and prediction of health status decline among the elderly at the neighborhood level are of great significance for urban planning and public health policymaking. While existing studies affirm the connection between living environments and health outcomes, most rely on single data modalities or simplistic feature concatenation of multi-modal information, limiting their ability to comprehensively profile the health-oriented urban environments. To fill this gap, we propose CureGraph, a contrastive multi-modal representation learning framework for urban health prediction that employs graph-based techniques to infer the prevalence of common chronic diseases among the elderly within the urban living circles of each neighborhood. CureGraph leverages rich multi-modal information, including photos and textual reviews of residential areas and their surrounding points of interest, to generate urban neighborhood embeddings. By integrating pre-trained visual and textual encoders with graph modeling techniques, CureGraph captures cross-modal spatial dependencies, offering a comprehensive understanding of urban environments tailored to elderly health considerations. Extensive experiments on real-world datasets demonstrate that CureGraph improves the best baseline by 28% on average in terms of across elderly disease risk prediction tasks. Moreover, the model enables the identification of stage-wise chronic disease progression and supports comparative public health analysis across neighborhoods, offering actionable insights for sustainable urban development and enhanced quality of life. The code is publicly available at https://github.com/jinlin2021/CureGraph.
JT14: Out-of-distribution detection by regaining lost clues
Authors: Zhilin Zhao, Longbing Cao, Philip S. Yu
Location: Guangzhou | Day: August 30th | Time: 11:00 | Session: ML: Transfer Learning
Show Abstract
Out-of-distribution (OOD) detection identifies samples in the test phase that are drawn from distributions distinct from that of training in-distribution (ID) samples for a trained network. According to the information bottleneck, networks that classify tabular data tend to extract labeling information from features with strong associations to ground-truth labels, discarding less relevant labeling cues. This behavior leads to a predicament in which OOD samples with limited labeling information receive high-confidence predictions, rendering the network incapable of distinguishing between ID and OOD samples. Hence, exploring more labeling information from ID samples, which makes it harder for an OOD sample to obtain high-confidence predictions, can address this over-confidence issue on tabular data. Accordingly, we propose a novel transformer chain (TC), which comprises a sequence of dependent transformers that iteratively regain discarded labeling information and integrate all the labeling information to enhance OOD detection. The generalization bound theoretically reveals that TC can balance ID generalization and OOD detection capabilities. Experimental results demonstrate that TC significantly surpasses state-of-the-art methods for OOD detection in tabular data.