JT1: On measuring inconsistency in graph databases with regular path constraints
Authors: Francesco Parisi, Francesco Parisi
Location: Montreal
| Day: August 20th
| Time: 10:00
| Session: Knowledge Representation and Reasoning (2/4)
Show Abstract
Real-world data are often inconsistent. Although a substantial amount of research has been done on measuring inconsistency, this research concentrated on knowledge bases formalized in propositional logic. Recently, inconsistency measures have been introduced for relational databases. However, nowadays, real-world information is always more frequently represented by graph-based structures which offer a more intuitive conceptualization than relational ones. In this paper, we explore inconsistency measures for graph databases with regular path constraints, a class of integrity constraints based on a well-known navigational language for graph data. In this context, we define several inconsistency measures dealing with specific elements contributing to inconsistency in graph databases. We also define some rationality postulates that are desirable properties for an inconsistency measure for graph databases. We analyze the compliance of each measure with each postulate and find various degrees of satisfaction; in fact, one of the measures satisfies all the postulates. Finally, we investigate the data and combined complexity of the calculation of all the measures as well as the complexity of deciding whether a measure is lower than, equal to, or greater than a given threshold. It turns out that for a majority of the measures these problems are tractable, while for the other different levels of intractability are exhibited.
JT2: Human-AI coevolution
Authors: Dino Pedreschi, Luca Pappalardo, Emanuele Ferragina, Ricardo Baeza-Yates, Albert-László Barabási, Frank Dignum, Virginia Dignum, Tina Eliassi-Rad, Fosca Giannotti, János Kertész, Alistair Knott, Yannis Ioannidis, Paul Lukowicz, Andrea Passarella, Alex Sandy Pentland, John Shawe-Taylor, Alessandro Vespignani
Location: Montreal
| Day: August 21st
| Time: 10:00
| Session: Humans and AI
Show Abstract
Human-AI coevolution, defined as a process in which humans and AI algorithms continuously influence each other, increasingly characterises our society, but is understudied in artificial intelligence and complexity science literature. Recommender systems and assistants play a prominent role in human-AI coevolution, as they permeate many facets of daily life and influence human choices through online platforms. The interaction between users and AI results in a potentially endless feedback loop, wherein users’ choices generate data to train AI models, which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar characteristics compared to traditional human-machine interaction and gives rise to complex and often “unintended” systemic outcomes. This paper introduces human-AI coevolution as the cornerstone for a new field of study at the intersection between AI and complexity science focused on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In doing so, we: (i) outline the pros and cons of existing methodologies and highlight shortcomings and potential ways for capturing feedback loop mechanisms; (ii) propose a reflection at the intersection between complexity science, AI and society; (iii) provide real-world examples for different human-AI ecosystems; and (iv) illustrate challenges to the creation of such a field of study, conceptualising them at increasing levels of abstraction, i.e., scientific, legal and socio-political.
JT3: The Human in Interactive Machine Learning: Analysis and Perspectives for Ambient Intelligence
Authors: Kevin Delcourt, Sylvie Trouilhet, Jean-Paul Arcangeli, Françoise Adreit
Location: Montreal
| Day: August 21st
| Time: 11:30
| Session: Humans and AI: Interpretable Models
Show Abstract
As the vision of Ambient Intelligence (AmI) becomes more feasible, the challenge of designing effective and usable human-machine interaction in this context becomes increasingly important. Interactive Machine Learning (IML) offers a set of techniques and tools to involve end-users in the machine learning process, making it possible to build more trustworthy and adaptable ambient systems. In this paper, our focus is on exploring approaches to effectively integrate and assist human users within ML-based AmI systems. Through a survey of key IML-related contributions, we identify principles for designing effective human-AI interaction in AmI applications. We apply them to the case of Opportunistic Composition, which is an approach to achieve AmI, to enhance collaboration between humans and Artificial Intelligence. Our study highlights the need for user-centered and context-aware design, and provides insights into the challenges and opportunities of integrating IML techniques into AmI systems.
JT4: A Semantic Framework for Neurosymbolic Computation
Authors: Simon Odense, Artur Garcez
Location: Montreal
| Day: August 21st
| Time: 11:30
| Session: ML: Neurosymbolic AI
Show Abstract
The field of neurosymbolic AI aims to benefit from the combination of neural networks and symbolic systems. A cornerstone of the field is the translation or encoding of symbolic knowledge into neural networks. Although many neurosymbolic methods and approaches have been proposed, and with a large increase in recent years, no common definition of encoding exists that can enable a precise, theoretical comparison of neurosymbolic methods. This paper addresses this problem by introducing a semantic framework for neurosymbolic AI. We start by providing a formal definition of semantic encoding, specifying the components and conditions under which a knowledge-base can be encoded correctly by a neural network. We then show that many neurosymbolic approaches are accounted for by this definition. We provide a number of examples and correspondence proofs applying the proposed framework to the neural encoding of various forms of knowledge representation. Many, at first sight disparate, neurosymbolic methods, are shown to fall within the proposed formalization. This is expected to provide guidance to future neurosymbolic encodings by placing them in the broader context of semantic encodings of entire families of existing neurosymbolic systems. The paper hopes to help initiate a discussion around the provision of a theory for neurosymbolic AI and a semantics for deep learning.
JT5: Grounded predictions of teamwork as a one-shot game: A multiagent multi-armed bandits approach
Authors: Alejandra López de Aberasturi Gómez, Jordi Sabater-Mir, Carles Sierra
Location: Montreal
| Day: August 21st
| Time: 10:00
| Session: MAS: Formal verification, validation and synthesis
Show Abstract
Humans possess innate collaborative capacities. However, effective teamwork often remains challenging. This study delves into the feasibility of collaboration within teams of rational, selfinterested agents who engage in teamwork without the obligation to contribute. Drawing from psychological and game theoretical frameworks, we formalise teamwork as a one-shot aggregative game, integrating insights from Steiner’s theory of group productivity. We characterise this novel game’s Nash equilibria and propose a multiagent multi-armed bandit system that learns to converge to approximations of such equilibria. Our research contributes value to the areas of game theory and multiagent systems, paving the way for a better understanding of voluntary collaborative dynamics. We examine how team heterogeneity, task typology, and assessment difficulty inuence agents’ strategies and resulting teamwork outcomes. Finally, we empirically study the behaviour of work teams under incentive systems that defy analytical treatment. Our agents demonstrate human-like behaviour patterns, corroborating ndings from social psychology research.
JT6: Scalable Primal Heuristics Using Graph Neural Networks for Combinatorial Optimization
Authors: Furkan Cantürk, Taha Varol, Reyhan Aydoğan, Okan Örsan Özener
Location: Montreal
| Day: August 19th
| Time: 11:30
| Session: Constraint Satisfaction and Optimization (1/3)
Show Abstract
By examining the patterns of solutions obtained for various instances, one can gain insights into the structure and behavior of combinatorial optimization (CO) problems and develop efficient algorithms for solving them. Machine learning techniques, especially Graph Neural Networks (GNNs), have shown promise in parametrizing and automating this laborious design process. The inductive bias of GNNs allows for learning solutions to mixed-integer programming (MIP) formulations of constrained CO problems with a relational representation of decision variables and constraints. The trained GNNs can be leveraged with primal heuristics to construct high-quality feasible solutions to CO problems quickly. However, current GNN-based end-to-end learning approaches have limitations for scalable training and generalization on larger-scale instances; therefore, they have been mostly evaluated over small-scale instances. Addressing this issue, our study builds on supervised learning of optimal solutions to the downscaled instances of given large-scale CO problems. We introduce several improvements on a recent GNN model for CO to generalize on instances of a larger scale than those used in training. We also propose a two-stage primal heuristic strategy based on uncertainty-quantification to automatically configure how solution search relies on the predicted decision values. Our models can generalize on 16x upscaled instances of commonly benchmarked five CO problems. Unlike the regressive performance of existing GNN-based CO approaches as the scale of problems increases, the CO pipelines using our models offer an incremental performance improvement relative to CPLEX. The proposed uncertainty-based primal heuristics provide 6-75% better optimality gap values and 45-99% better primal gap values for the 16x upscaled instances and brings immense speedup to obtain high-quality solutions. All these gains are achieved through a computationally efficient modeling approach without sacrificing solution quality.
JT12: CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization
Authors: Frederic Kirstein, Jan Philip Wahle, Bela Gipp, Terry Ruas
Location: Montreal
| Day: August 22nd
| Time: 10:00
| Session: Natural Language Processing (1/2)
Show Abstract
Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although focused reviews have been conducted on this topic, there is a lack of comprehensive work that details the core challenges of dialogue summarization, unifies the differing understanding of the task, and aligns proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. Recent advances in training methods have led to substantial improvements in language-related challenges. However, challenges such as comprehension, factuality, and salience remain difficult and present significant research opportunities. We further investigate how these approaches are typically analyzed, covering the datasets for the subdomains of dialogue (e.g., meeting, customer service, and medical), the established automatic metrics (e.g., ROUGE), and common human evaluation approaches for assigning scores and evaluating annotator agreement. We observe that only a few datasets (i.e., SAMSum, AMI, DialogSum) are widely used. Despite its limitations, the ROUGE metric is the most commonly used, while human evaluation, considered the gold standard, is frequently reported without sufficient detail on the inter-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that our described challenge taxonomy remains relevant despite a potential shift in relevance and difficulty.
JT13: Human Activity Recognition in an Open World
Authors: Derek Prijatelj, Samuel Grieggs, Jin Huang, Dawei Du, Ameya Shringi, Christopher Funk, Adam Kaufman, Eric Robertson, Walter Scheirer
Location: Montreal
| Day: August 19th
| Time: 11:30
| Session: Computer Vision (1/3)
Show Abstract
Managing novelty in perception-based human activity recognition (HAR) is critical in realistic settings to improve task performance over time and ensure solution generalization outside of prior seen samples. Novelty manifests in HAR as unseen samples, activities, objects, environments, and sensor changes, among other ways. Novelty may be task-relevant, such as a new class or new features, or task-irrelevant resulting in nuisance novelty, such as never before seen noise, blur, or distorted video recordings. To perform HAR optimally, algorithmic solutions must be tolerant to nuisance novelty, and learn over time in the face of novelty. This paper 1) formalizes the definition of novelty in HAR building upon the prior definition of novelty in classification tasks, 2) proposes an incremental open world learning (OWL) protocol and applies it to the Kinetics datasets to generate a new benchmark KOWL-718, 3) analyzes the performance of current stateof-the-art HAR models when novelty is introduced over time, 4) provides a containerized and packaged pipeline for reproducing the OWL protocol and for modifying for any future updates to Kinetics. The experimental analysis includes an ablation study of how the different models perform under various conditions as annotated by Kinetics-AVA. The code may be used to analyze different annotations and subsets of the Kinetics datasets in an incremental open world fashion, as well as be extended as further updates to Kinetics are released.
JT15: Confidence-based Estimators for Predictive Performance in Model Monitoring
Authors: Juhani Kivimäki, Jakub Białek, Jukka K. Nurminen, Wojtek Kuberski
Location: Montreal
| Day: August 20th
| Time: 10:00
| Session: Machine Learning (2/4)
Show Abstract
After a machine learning model has been deployed into production, its predictive performance needs to be monitored. Ideally, such monitoring can be carried out by comparing the model’s predictions against ground truth labels. For this to be possible, the ground truth labels must be available relatively soon after inference. However, there are many use cases where ground truth labels are available only after a significant delay, or in the worst case, not at all. In such cases, directly monitoring the model’s predictive performance is impossible. Recently, novel methods for estimating the predictive performance of a model when ground truth is unavailable have been developed. Many of these methods leverage model confidence or other uncertainty estimates and are experimentally compared against a naive baseline method, namely Average Confidence (AC), which estimates model accuracy as the average of confidence scores for a given set of predictions. However, until now the theoretical properties of the AC method have not been properly explored. In this paper, we bridge this gap by reviewing the AC method and show that under certain general assumptions, it is an unbiased and consistent estimator of model accuracy. We also augment the AC method by deriving valid confidence intervals for the estimates it produces. These contributions elevate AC from an ad-hoc estimator to a principled one, encouraging its use in practice. We complement our theoretical results with empirical experiments, comparing AC against more complex estimators in a monitoring setting under covariate shift. We conduct our experiments using synthetic datasets, which allow for full control over the nature of the shift. Our experiments with binary classifiers show that the AC method is able to beat other estimators in many cases. However, the comparative quality of the different estimators is found to be heavily case-dependent.
JT16: Credulous acceptance in high-order argumentation frameworks with necessities: An incremental approach
Authors: Gianvincenzo Alfano, Andrea Cohen, Sebastian Gottifredi, Sergio Greco, Francesco Parisi, Guillermo R. Simari
Location: Montreal
| Day: August 19th
| Time: 11:30
| Session: Knowledge Representation and Reasoning (1/4)
Show Abstract
Argumentation is an important research area in the field of AI. There is a substantial amount of work on different aspects of Dung’s abstract Argumentation Framework (AF). Two relevant aspects considered separately so far are: i) extending the framework to account for recursive attacks and supports, and ii) considering dynamics, i.e., AFs evolving over time. In this paper, we jointly deal with these two aspects. We focus on High-Order Argumentation Frameworks with Necessities (HOAFNs) which allow for attack and support relations (interpreted as necessity) not only between arguments but also targeting attacks and supports at any level. We propose an approach for the incremental evaluation of the credulous acceptance problem in HOAFNs, by “incrementally” computing an extension (a set of accepted arguments, attacks and supports), if it exists, containing a given goal element in an updated HOAFN. In particular, we are interested in monitoring the credulous acceptance of a given argument, attack or support (goal) in an evolving HOAFN. Thus, our approach assumes to have a HOAFN Δ, a goal ϱ occurring in Δ, an extension E for Δ containing ϱ, and an update u establishing some changes in the original HOAFN, and uses the extension for first checking whether the update is relevant; for relevant updates, an extension of the updated HOAFN containing the goal is computed by translating the problem to the AF domain and leveraging on AF solvers. We provide formal results for our incremental approach and empirically show that it outperforms the evaluation from scratch of the credulous acceptance problem for an updated HOAFN.
JT17: Explain it as simple as possible, but no simpler – Explanation via model simplification for addressing inferential gap
Authors: Sarath Sreedharan, Siddharth Srivastava, Subbarao Kambhampati
Location: Montreal
| Day: August 21st
| Time: 10:00
| Session: ML: Explainable/Interpretable machine learning
Show Abstract
One of the core challenges of explaining decisions made by modern AI systems is the need to address the potential gap in the inferential capabilities of the system generating the decision and the user trying to make sense of it. This inferential capability gap becomes even more critical when it comes to explaining sequential decisions. While there have been some isolated efforts at developing explanation methods suited for complex decision-making settings, most of these current efforts are limited in scope. In this paper, we introduce a general framework for generating explanations in the presence of inferential capability gaps. A framework that is grounded in the generation of simplified representations of the agent model through the application of a sequence of model simplifying transformations. This framework not only allows us to develop an extremely general explanation generation algorithm, but we see that many of the existing works in this direction could be seen as specific instantiations of our more general method. While the ideas presented in this paper are general enough to be applied to any decision-making framework, we will focus on instantiating the framework in the context of stochastic planning problems. As a part of this instantiation, we will also provide an exhaustive characterization of explanatory queries and an analysis of various classes of applicable transformations. We will evaluate the effectiveness of transformation-based explanations through both synthetic experiments and user studies.